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Abstract We study various statistical properties of real roots of three different classes of
random polynomials which recently attracted a vivid interest in the context of probabil-
ity theory and quantum chaos. We first focus on gap probabilities on the real axis, i.e. the
probability that these polynomials have no real root in a given interval. For generalized
Kac polynomials, indexed by an integer d, of large degree n, one finds that the probabil-
ity of no real root in the interval [0,1] decays as a power law n−θ(d) where θ(d) > 0 is
the persistence exponent of the diffusion equation with random initial conditions in spa-
tial dimension d. For n � 1 even, the probability that they have no real root on the full
real axis decays like n−2(θ(2)+θ(d)). For Weyl polynomials and Binomial polynomials, this
probability decays respectively like exp (−2θ∞

√
n) and exp (−πθ∞

√
n) where θ∞ is such

that θ(d) = 2−3/2θ∞
√

d in large dimension d. We also show that the probability that such
polynomials have exactly k roots on a given interval [a, b] has a scaling form given by
exp (−Nabϕ̃(k/Nab)) where Nab is the mean number of real roots in [a, b] and ϕ̃(x) a univer-
sal scaling function. We develop a simple Mean Field (MF) theory reproducing qualitatively
these scaling behaviors, and improve systematically this MF approach using the method of
persistence with partial survival, which in some cases yields exact results. Finally, we show
that the probability density function of the largest absolute value of the real roots has a uni-
versal algebraic tail with exponent −2. These analytical results are confirmed by detailed
numerical computations. Some of these results were announced in a recent letter (Schehr
and Majumdar in Phys. Rev. Lett. 99:060603, 2007).
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1 Introduction

Despite several decades of research, understanding the zero crossing properties of non-
Markov stochastic processes remains a challenging issue. Among them, the persistence
probability p0(t) received a particular attention, especially in the context of many-body
non-equilibrium statistical physics, both analytically [1] as well as experimentally [2–5].
The persistence p0(t) for a time dependent stochastic process with zero mean is defined as
the probability that it has not changed sign up to time t . In various physical situations, p0(t)

has a power law tail p0(t) ∼ t−θ where θ turns out to be a non-trivial exponent whenever the
stochastic process under study has a non Markovian dynamics. One such example is the dif-
fusion, or heat equation in space dimension d where a scalar field φ(x, t) evolves according
to the deterministic equation

∂tφ(x, t) = ∇2φ(x, t), (1)

with random initial conditions φ(x, t = 0) = ψ(x) where ψ(x) is a Gaussian random field
of zero mean with delta correlations [ψ(x)ψ(x′)]ini = δd(x − x′). We use the notation [. . .]ini

to denote an average over the initial condition. For a system of linear size L, the persistence
p0(t,L) is the probability that φ(x, t), at some fixed point x in space, does not change sign
up to time t . The initial condition being (statistically) invariant under translation in space,
this probability does not depend on the position x. In the scaling limit t � 1, L � 1 keeping
the ratio t/L2 fixed, it was found in [6] that p0(t,L) takes the scaling form

p0(t,L) ∝ L−2θ(d)h(L2/t), (2)

where h(u) ∼ cst, a constant independent of L and t , for u 	 1 and h(u) ∝ uθ(d) for
u � 1 where θ(d) is a d-dependent exponent. This implies that in the L → ∞ limit,
p0(t) ≡ p0(t,L → ∞) ∼ t−θ(d) for large t . It was shown in [6] that the probability P0(T )

that a Gaussian stationary process (GSP) with zero mean and correlations [cosh(T /2)]−d/2

decays for large T as P0(T ) ∼ exp [−θ(d)T ] where θ(d) is the same as the persistence
exponent in diffusion equation. This exponent θ(d) was measured in numerical simula-
tions [6, 7], yielding for instance θsim(1) = 0.12050(5), θsim(2) = 0.1875(1). The case of
dimension d = 1 is particularly interesting because θ(1) was determined experimentally us-
ing NMR techniques to measure the magnetization of spin polarized Xe gas [5], yielding
θexp(1) = 0.12 in good agreement with numerical simulations. In the limit of large dimen-
sion d , which will be of interest in the following, one can show that θ(d) = 2−3/2θ∞

√
d

where θ∞ is the decay constant associated with the no zero crossing probability of the GSP
with Gaussian correlations exp (−T 2/2), which was studied in the past by engineers, in
particular in the context of fading of long-wave radio signals (see for instance [8]).

A seemingly unrelated topic concerns the study of random algebraic equations which,
since the first work by Bloch and Pólya [9] in the 1930s, has now a long history [10, 11].
Recently it has attracted a renewed interest in the context of probability and number theory
[12] as well as in the field of quantum chaos [13, 14]. In a recent letter [15], we have es-
tablished a close connection between zero crossing properties of the diffusion equation with
random initial conditions (1) and the real roots of real random polynomials (i.e. polynomials
with real random coefficients). In [15], we focused on a class of real random polynomials
Kn(x) of degree n, the so called generalized Kac polynomials, indexed by an integer d

Kn(x) = a0 +
n∑

i=1

aii
d−2

4 xi. (3)
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Here, and in the following, ai ’s are independent real Gaussian random variables of zero
mean and unit variance 〈aiaj 〉 = δij where we use the notation 〈. . .〉 to denote an average
over the random coefficients ai . In the case of d = 2, these polynomials reduce to the stan-
dard Kac polynomials [16], which have been extensively studied in the past (see for instance
[12] for a recent review). In that case, we will see below that the statistics of real roots of
Kn(x) is identical in the 4 sub-intervals [−∞,−1], [−1,0], [0,1] and [1,+∞]. Instead,
for d �= 2, which was studied in [17], the statistical behavior of real roots of Kn(x) depend
on d in the inner intervals, while it is identical to the case d = 2 in the outer ones. Fo-
cusing on the interval [0,1], we asked the question: what is the probability P0([0, x], n),
0 < x < 1, that Kn(x) has no real root in the interval [0, x]? Such probabilities were often
studied in the context of random matrices, where they are known as gap probabilities [18]
and in a recent work [19], Dembo et al. showed that, for random polynomials Kn(x) with
d = 2, P0([0,1], n) ∝ n−ζ(2) where the exponent ζ(2) = 0.190(8) was computed numeri-
cally. In [15], by mapping these two random processes (1) and (3) onto the same GSP, we
showed that in the limit 1 − x 	 1 	 n keeping n(1 − x) fixed, one has (similarly to (2))

P0([0, x], n) ∝ n−θ(d)h−(n(1 − x)), (4)

with h−(y) → 1 for y 	 1 and h−(y) ∼ yθ(d) for y � 1, yielding in particular P0([0,1], n) ∝
n−ζ(d) thus identifying ζ(d) = θ(d). We then extended our study to the probability
Pk([0,1], n) that generalized Kac polynomials have exactly k real roots in [0,1] and we
showed that it has an unusual scaling form (for large k, large n, but keeping the ratio k/ logn

fixed)

Pk([0,1], n) ∝ n
−ϕ̃( k

logn
)
, (5)

where ϕ̃(y) is a large deviation function, with ϕ̃(0) = θ(d). In both cases, our numerical
analysis suggested that h−(y) and ϕ̃(y) are universal in the sense that they are independent
of the distribution of ai provided 〈a2

i 〉 is finite. The purpose of the present paper is twofold:
(i) we will give detailed derivations of the results announced in [15] together with some new
results, like the distribution of the largest real root, for generalized Kac polynomials Kn(x)

(3), (ii) we extend these results (4, 5) to two other classes of random polynomials which were
recently considered in the literature. First we will study Weyl polynomials Wn(x) defined as

Wn(x) =
n∑

i=0

ai

xi

√
i! . (6)

Recently, the distribution of complex zeros of Weyl polynomials with complex coefficients
were observed experimentally in a degenerate rotating quasi-ideal atomic Bose gas [20].
Here we will focus instead on the real roots of such polynomials (6) with real coefficients.
Besides, we will consider binomial polynomials Bn(x) defined as

Bn(x) =
n∑

i=0

ai

√(
n

i

)
xi. (7)

As is pointed out by Edelman and Kostlan [12], “this particular random polynomial is prob-
ably the more natural definition of a random polynomial”. In the literature, they are some-
times called SO(2) random polynomials because their m-point joint probability distribution
of zeros is SO(2) invariant for all m [21]. We will show below that the gap probabilities for
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these classes of random polynomials (6, 7) are closely related to the persistence probability
for the diffusion equation in the limit of large dimension. Our main results, together with
the layout of the paper, are summarized below.

1. In Sect. 2, we briefly recall the main properties of the persistence probability, p0(t,L),
for the diffusion equation with random initial conditions. In Sect. 2.1, we recall the finite
size scaling for p0(t,L) in dimension d whereas in Sect. 2.2, we focus on the limit
d → ∞.

2. Section 3 is devoted to real random polynomials, where our main results are presented.
In Sect. 3.1, we present a detailed study of the density of real roots for these three classes
of polynomials, which turns out to behave quite differently in all the three cases under
investigations (3, 6, 7). In Sect. 3.2, we will turn to the analysis of gap probabilities,
which we will first analyse from the point of view of two-point correlations. Next, we
will present a mean field approach, or Poissonian approximation, which neglects the cor-
relations between the real roots of these polynomials, to compute the gap probabilities.
We will further show how this mean field approximation can be systematically improved
using the persistence probability with partial survival [22], which in some cases even
yields exact results. In particular we show that the probability q0(n) that these polynomi-
als have no root on the full real axis is given by

q0(n) ∼ n−2(θ(d)+θ(2)) for Kn(x),

q0(n) ∼ exp (−2θ∞
√

n) for Wn(x),

q0(n) ∼ exp (−πθ∞
√

n) for Bn(x).

(8)

In Sect. 3.3, we will then generalize this study to the probability that these polynomials
have exactly k real roots on a given real interval. Extending the results obtained in [15] for
Kn(x) like in (5), to Weyl and Binomial polynomials, we will show that the probability
qk(n) that Wn(x) and Bn(x) have exactly k roots on the full real axis has a scaling form
(for large k, large n, but keeping the ratio k/

√
n fixed) given by

qk(n) ∼ exp [−√
nϕ̃(k/

√
n)], (9)

where ϕ̃(y) is a large deviation function, which depends on the polynomials under con-
sideration Wn(x) or Bn(x). We will also show that these scaling forms in (5, 9) can be
qualitatively described by the aforementioned mean field approximation. To end up, we
study in Sect. 3.4 the probability density (p.d.f.) pmax(x) of the largest absolute value of
the real roots and obtain the exact asymptotic result

pmax(x) ∝ 1

x2
, x � 1, (10)

for all the three classes of random polynomials under investigation. All our analytical
results will be verified by numerical computations and some details of the analytical
computations involved in this section have been left in Appendices A, B, C, D and E.

3. Finally Sect. 4 contains our conclusions and perspectives.

2 A Brief Overview on Persistence for Diffusion Equation in Dimension d

2.1 Persistence Exponent θ(d) and Finite Size Scaling

We consider a scalar field φ(x, t) in a d-dimensional space which evolves in time under the
diffusion equation (1). For a system of linear size L, the solution of the diffusion equation
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in the bulk of the system is

φ(x, t) =
∫

|y|≤L

dyG(x − y, t)ψ(y), G(x) = (4πt)−d/2 exp (−x2/4t), (11)

where ψ(x) = φ(x,0) is the initial uncorrelated Gaussian field. Since (11) is linear, φ(x, t) is
a Gaussian variable for all time t ≥ 0. Therefore its zero crossing properties are completely
determined by the two time correlator [φ(x, t)φ(x, t ′)]ini. To study the persistence probabil-
ity p0(t,L) it is customary to study the normalized process X(t) = φ(x, t)/[φ(x, t)2]1/2

ini [1].
Its autocorrelation function a(t, t ′) = [X(t)X(t ′)]ini is computed straightforwardly from the
solution in (11). One obtains a(t, t ′) ≡ a(t̃, t̃ ′) with t̃ = t/L2, t̃ ′ = t ′/L2 and

a(t̃, t̃ ′) =
⎧
⎨

⎩

(
4t̃ t̃ ′

(t̃+t̃ ′)2

)d/4
, t̃ , t̃ ′ 	 1

1, t̃ , t̃ ′ � 1.
(12)

We first focus on the time regime t̃ , t̃ ′ 	 1. In terms of logarithmic time variable T = log t̃ ,
X(T ) is a GSP with correlator

a(T ,T ′) ≡ a(T − T ′) = [cosh(|T − T ′|/2)]−d/2, (13)

which decays exponentially for large |T −T ′|. Thus the persistence probability p0(t,L), for
t 	 L2, reduces to the computation of the probability P0(T ) of no zero crossing of X(T )

in the interval [0, T ]. It is well known [23] that if a(T ) < 1/T at large T then P0(T ) ∼
exp[−θT ] for large T where the decay constant θ depends on the full stationary correlator
a(T ). Reverting back to the original time t̃ = eT , one finds p0(t,L) ∼ t−θ(d), for t 	 L2. In
the opposite limit t � L2, one has p0(t,L) → AL, a constant which depends on L. These
two limiting behaviors of p0(t,L) can be combined into a single finite size scaling form as
in (2).

Despite many efforts, there exists no exact result for θ(d). However various approxima-
tion methods have been developed to estimate it. One of the most powerful is the so called
Independent Interval Approximation (IIA) [24], which assumes the statistical independence
of the intervals between successive zeros of φ(x, t). This gives e.g. θIIA(1) = 0.1203 . . . ,
θIIA(2) = 0.1862 . . . [6] in remarkable agreement with numerical simulations. A more sys-
tematic approach is via persistence with partial survival [22], which we will use below (see
Sect. 3.2). An alternative systematic approach consists in performing a small d expansion
[25] yielding θ(d) = d/4 − 0.12065 . . . d3/2 + · · · , which would certainly require higher or-
der terms to make it numerically competitive. Yet another systematic approach is a series
expansion introduced in the context of “discrete time persistence”, yielding results for θ(d)

which are in very good agreement with numerical simulations [26].

2.2 Persistence in the Limit of Large Dimension d

As we will see later, some statistical properties of the real roots of the polynomials Wn(x)

(6) and Bn(x) (7) turn out to be related to the statistics of zero crossings of the diffusion
equation in the limit of large dimension d . To study the persistence probability in that limit
one performs a rescaling of the T variable in (13), T = 23/2T̃ /

√
d such that

a(T − T ′) = a

(
23/2 T̃ − T̃ ′

√
d

)
∼ exp

[
−1

2
(T̃ − T̃ ′)2

]
, d � 1. (14)
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Therefore in the limit of large dimension d , one has θ(d) = 2−3/2θ∞
√

d where θ∞ is the
decay constant associated with the no zero crossing probability of the GSP with correlator
exp [− 1

2 (T − T ′)2]. Even in that limit, there is no exact result for θ∞. However, it can be
approximately estimated using IIA [24], yielding θ∞,IIA = 0.411497 . . . [6] in very good
agreement with numerical simulations θ∞,sim = 0.417(3) [7].

3 Random Polynomials

We now focus on statistical properties of the real roots of random polynomials, extending
our previous study presented in [15]. Being Gaussian processes, the statistical properties of
these polynomials are determined by the 2-point correlators Cn(x, y), given by

Cn(x, y) = 〈Kn(x)Kn(y)〉 = 1 +
n∑

i=1

i
d−2

2 (xy)i for Kac polynomials, (15)

Cn(x, y) = 〈Wn(x)Wn(y)〉 =
n∑

i=0

(xy)i

i! for Weyl polynomials, (16)

Cn(x, y) = 〈Bn(x)Bn(y)〉 =
n∑

i=0

(
n

i

)
(xy)i = (1 + xy)n for Binomial polynomials. (17)

For simplicity, we chose the same notation Cn(x, y) for the three classes of polynomials
under study, and we will do so for other quantities. In the following, these three polynomials
will be treated separately so this should not induce any confusion. For later purposes it is
convenient to introduce the normalized correlator Ĉn(x, y) with

Ĉn(x, y) = Cn(x, y)√
Cn(x, x)Cn(y, y)

. (18)

Notice that Ĉn(x, y) = Ĉn(1/x,1/y) for Kac polynomials Kn(x) with d = 2 and for Bino-
mial polynomials Bn(x).

3.1 Density and Mean Number of Real Roots

Let us denote λ1, λ2, . . . , λp the p real roots (if any) of one of these random polynomials in
(3, 6, 7). The mean density of real roots ρn(x) is given by

ρn(x) =
p∑

i=1

〈δ(x − λi)〉 = 〈|K ′
n(x)|δ(Kn(x))〉, for Kac polynomials, (19)

and similarly for Weyl polynomials Wn(x) and Binomial polynomials Bn(x). Under this
form (19), one observes that the computation of the mean density involves the joint distribu-
tion of the polynomial Kn(x) and its derivative K ′

n(x) which is simply a bivariate Gaussian
distribution. Thus computing ρn(x) involves a double integration of a bivariate Gaussian
distribution. This can be easily performed to obtain the following well known result

ρn(x) =
√

cn(x)(c′
n(x)/x + c′′

n(x)) − [c′
n(x)]2

2πcn(x)
, cn(x) = Cn(x, x). (20)
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Fig. 1 Top: Mean density of real
roots ρn(x) for Kac polynomials
Kn(x) (3) and d = 2 as a
function of x for different values
of n = 10,50 (dotted lines). The
solid line is the analytic
expression ρ∞(x) in (25) for
|x| < 1 and in (27) for |x| > 1.
Bottom: Plot of n−1ρn(x) as a
function of n(1 − x) for
n = 500,1000 (and thus x close
to ±1). The dotted line is the
function ρK(y) in (31). There is
no fitting parameter

This formula (20) can be written in a very compact way [12]:

ρn(x) = 1

π

√
∂u∂v logCn(u, v)

∣∣∣∣
u=v=x

. (21)

For these different polynomials in (3, 6, 7), we will be interested in the number of real roots
on a given interval [a, b], which we will denote Nn[a, b]. Being a random variable, we will
focus on its moments 〈Nk

n [a, b]〉, with k ∈ N. In particular, one has from the definition of
ρn(x) in (19)

〈Nn[a, b]〉 =
∫ b

a

ρn(x) dx, (22)

and higher cumulants will be considered below.

3.1.1 Generalized Kac Polynomials

One remarkable property of the generalized Kac polynomials Kn(x) is that, in the large n

limit, the roots in the complex plane tend to accumulate close to the unit circle centered at
the origin. In the top panel of Fig. 1, we show a plot of the density of real roots ρn(x) for
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d = 2 computed from (21) for different values of n = 10 and 50. In the large n limit, one
clearly sees that the real roots of such polynomials are concentrated around x = ±1, where
the density is diverging. This can be seen by computing ρn(±1) from (21)

ρn(±1) = 1

π

((1 +H(n,1 − d/2))H(n,−d/2 − 1) −H(n,−d/2)2)
1
2

1 +H(n,1 − d/2)

∝ 2n

π(d + 2)

√
d

d + 4
, (23)

where H(n, r) =∑n

k=1 k−r is a generalized harmonic number [28]. To obtain the asymptotic
behavior in the large n limit of the above equation (23) we used H(n, r) ∝ n1−r/(1 − r), for
large n and r < 1.

Away from these singularities, ρn(x) has a good limit when n → ∞. However, one has to
treat separately the cases |x| < 1 and |x| > 1. For |x| < 1, the calculation is straightforward
because Cn(x, y) in (15) has a good limit n → ∞ when x, y < 1. This yields

ρ∞(x) = [Li−1−d/2(x
2)(1 + Li1−d/2(x

2)) − Li2
−d/2(x

2)] 1
2

π |x|(1 + Li1−d/2(x2))
, |x| < 1, (24)

where Lin(z) = ∑∞
i=1 zi/in is the polylogarithm function [28]. In particular, one has

ρ∞(0) = 1/π for all d , and ρ∞(x) ∼ (d/2)
1
2 (2π((1 − x)))−1 for x → 1−. For instance,

one has for |x| < 1

ρ∞(x) = 1

π(1 − x2)
in d = 2,

ρ∞(x) = 1

π(1 − x2)

√
x8 + 2x6 − 4x4 + 2x2 + 1

x8 − 2x6 + 3x4 − 2x2 + 1
in d = 4.

(25)

For |x| > 1, the analysis is different because the correlator Cn(x, y) in (15) does not con-
verge any more in the limit n → ∞ when x, y > 1. Instead, one has in that case (see
also [17])

Cn(x, y) = 1 +
n∑

i=1

i
d−2

2 (xy)i ∝ n
d−2

2 (xy)n+1

xy − 1
, x, y > 1. (26)

This leads to the expression for the density ρ∞(x) for |x| > 1:

ρ∞(x) = 1

π(x2 − 1)
, (27)

independently of d . To understand better the divergence of ρn(x) around x = ±1 (23) when
n � 1, we focus on ρn(x) around x = 1. In the limit n � 1 and 1 − x 	 1 keeping y =
n(1 − x) fixed, one shows in Appendix A (see also [29]) that

ρn(x) = nρK(n(1 − x)), ρK(y) = 1

π

√
Id/2+1(y)

Id/2−1(y)
−
(

Id/2(y)

Id/2−1(y)

)2

, (28)

Im(y) =
∫ 1

0
dxxm exp (−2yx). (29)
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One has ρK(0) = 2
π

1
d+2

√
d

d+4 , recovering the large n behavior in (23) and its asymptotic

behaviors are given by (see Appendix A)

ρK(y) ∼
⎧
⎨

⎩
1

2πy

√
d
2 , y → +∞

1
2π |y| , y → −∞.

(30)

For instance, one has

ρK(y) = 1

2π

(
1

y2
− 1

sinh2 y

)1/2

, in d = 2. (31)

In the bottom panel of Fig. 1, we show a plot of n−1ρn(x), where ρn(x) is given in (116), as
a function of n(1 − x) for d = 2 and different large values of n = 500,1000 together with
the asymptotic results in (31): we find a very good agreement with these analytic predictions
(28, 31).

Having computed the mean density of real roots, we now focus on 〈Nn([a, b])〉. On the
interval [0,1] the main contribution to the mean number of real roots comes, for large n,
from the vicinity of x = 1. Therefore, to compute 〈Nn[0,1]〉 to leading order in n, one uses
the scaling form for the density in (28), valid close to x = 1, and the asymptotic behavior in
(30) to obtain for n � 1

〈Nn[0,1]〉 = 〈Nn[−1,0]〉 =
∫ n

0
ρK(y)dy +O(1) = 1

2π

√
d

2
logn +O(1), (32)

where the corrections of order O(1) receive contributions from the whole interval [0,1] (not
only from the vicinity of x = ±1).

Similarly, one gets from (28) and (30):

〈Nn[−∞,−1]〉 = 〈Nn[1,+∞]〉 =
∫ n

0
ρK(−y)dy +O(1) = 1

2π
logn +O(1), (33)

which is independent of d [17]. From (32, 33) we compute the total number of roots on the
real axis:

〈Nn([−∞,+∞])〉 = 1

π

(
1 +

√
d

2

)
logn +O(1), (34)

thus recovering, in a way similar to the one used in [12] for d = 2, the result of [17]. Notice
that for d = 2 the higher order terms of the large n expansion in this formula (34) have been
obtained by various authors (see for instance [12, 30]), although, to our knowledge, they
have not been computed for d �= 2.

In view of future purposes, we also compute 〈Nn[0, x]〉 in the asymptotic limit where
n � 1, and 0 < 1 − x 	 1 with n(1 − x) kept fixed:

〈Nn[0, x]〉 = 〈Nn[0,1]〉 − η−(n(1 − x)), (35)

η−(y) =
∫ y

0
duρK(u), (36)
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such that η−(0) = 0 and with the asymptotic behavior obtained from (30)

η−(y) ∼ 1

2π

√
d

2
logy, y → ∞. (37)

Similarly, we compute 〈Nn[x,∞]〉 when x > 1 and obtain for n � 1 and 0 < x − 1 	 1
keeping y = n(x − 1) fixed

〈Nn[x,∞]〉 = 〈Nn[1,∞]〉 − η+(n(x − 1)), (38)

η+(y) =
∫ y

0
duρK(−u), (39)

such that η+(0) = 0 and with the asymptotic behavior obtained from (30)

η+(y) ∼ 1

2π
logy, y → ∞. (40)

We conclude this subsection by noting that, for d = 2, the statistics of real roots of Kn(x)

is identical in the 4 sub-intervals [−∞,−1], [−1,0], [0,1] and [1,+∞]. Instead, for d �= 2,
the statistical behavior of real roots of Kn(x) depend on d in the two inner intervals, while
it is identical to the case d = 2 in the two outer ones. In addition, we will see below that the
polynomials Kn(x) (3) take independent values in these 4 subintervals.

3.1.2 Weyl Polynomials

For Weyl polynomials Wn(x) in (6), the expression of the correlation function (16) together
with the expression for the density in (21) yields

ρn(x) = 1

π

√

1 + x2n(x2 − n − 1)

ex2
(n + 1, x2)

− x4n+2

[ex2
(n + 1, x2)]2

, (41)

where (n,x) = ∫∞
x

dte−t tn−1 is the incomplete gamma function [28]. In Fig. 2, we show a
plot of ρn(x) (41) for different values of n = 50,100 and 500. One obtains straightforwardly,
in the limit n → ∞ the uniform density

ρ∞(x) = 1

π
. (42)

For n large but finite, the density is uniform like in (42) up to |x| ∼ √
n above which it

vanishes (see Fig. 2). Indeed, one shows in Appendix B that for n � 1, one has

ρn(x) ∼
{

π−1, |x| 	 √
n,√

n

πx2 , |x| � √
n.

(43)

One notices that this behavior of the density of real roots for Weyl polynomials (43) is
similar to the density of real eigenvalues for Ginibre random matrices [31], i.e. random
n × n matrices formed from i.i.d. Gaussian entries. Besides, from this scaling form (43) one
obtains the number of real roots in the interval [−x, x], x > 0, in the large n limit as

〈Nn[−x, x]〉 =
∫ x

−x

dtρn(t) ∼
{

2x/π, x <
√

n

2
√

n/π, x ≥ √
n,

(44)
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Fig. 2 Mean density of real
roots ρn(x) given in (41) for
Weyl polynomials Wn(x) (6) as a
function of x for different values
of n = 50,100 and 500

Fig. 3 Scaled mean density of
real roots n−1/2ρn(x) as a
function of x (46) for binomial
polynomials Bn(x) (7)

from which one gets the total number of real roots for n � 1 (see also [32])

〈Nn[−∞,+∞]〉 ∼ 2

π

√
n. (45)

To our knowledge, the higher order terms in this large n expansion are not known.

3.1.3 Binomial Polynomials

For binomial polynomials, the computation of the density ρn(x) is straightforward. Indeed,
using (17) together with the formula for the density (21), one obtains

ρn(x) = √
nρB(x), ρB(x) = 1

π(1 + x2)
, (46)

exactly for all n > 1 [12, 21].
In Fig. 3, we show a plot of ρB(x) as a function of x. This formula (46) yields

〈Nn[a, b]〉 =
∫ b

a

ρn(t) dt =
√

n

π
(ArcTanb − ArcTana), (47)
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from which one gets the very simple result (see for instance [12])

〈Nn[−∞,+∞]〉 = √
n, exactly ∀n. (48)

3.2 “Gap Probability” on the Real Axis

We now study another aspect of the statistical properties of the real roots of these polynomi-
als and focus on the probability P0([a, b], n) that they have no real root on a given interval
[a, b]. The interval under study will depend on the polynomials Kn(x), Wn(x) or Bn(x).

3.2.1 Results from the Correlation Function

These polynomials, as a function of x, are Gaussian processes and therefore their zero-
crossing properties are completely determined by the two-point correlators given in (15–17).

Generalized Kac Polynomials For these polynomials Kn(x), given the singularity of the
mean density ρn(x) around x = ±1 (see Fig. 1), it is natural to study separately P0([0, x], n),
for x < 1, and P0([x,∞], n) for x > 1. We first focus on P0([0, x], n) and reparametrize
Kn(x) with a change of variable, x = 1 − 1/t . One finds that the relevant scaling limit of
Cn(t, t

′) is obtained for t, t ′, n → ∞ keeping t̃ = t/n and t̃ ′ = t ′/n fixed. In that scaling
limit the discrete sum in (15) can be viewed as a Riemann sum and one finds

Cn(x, y) ∝ nd/2Id/2−1

(
1

2t̃
+ 1

2t̃ ′

)
, (49)

where Im(y) is defined in (29). Thus the normalized correlator Ĉn(t, t
′) → C(t̃ , t̃ ′) with the

asymptotic behaviors (see (120))

C(t̃ , t̃ ′) ∼
⎧
⎨

⎩

(
4 t̃ t̃ ′

(t̃+t̃ ′)2

) d
4
, t̃ , t̃ ′ 	 1

1, t̃ , t̃ ′ � 1.

(50)

Thus this correlator is exactly the same as the one found for diffusion, C(t̃ , t̃ ′) = a(t̃, t̃ ′)
in (12). Since a Gaussian process is completely characterized by its two-point correlator,
we conclude that the diffusion process and the random polynomial are essentially the same
Gaussian process and hence have the same zero crossing properties. Therefore, in complete
analogy with (2) we propose the scaling form for generalized Kac polynomials

P0([0, x], n) = A−
d,nn

−θ(d)h−(n(1 − x)), (51)

where A−
d,n, which is independent of x, is such that limn→∞ logA−

d,n/ logn = 0 and
h−(y) → 1 for y 	 1 whereas h−(y) ∼ yθ(d) for y � 1, where θ(d) is the persistence expo-
nent associated to the diffusion equation in dimension d . Defined in this way (51), h−(u) is
a universal function (see below), although the amplitude A−

d,n is not. Note that n here plays
the role of L2 in diffusion problem while the variable 1 − x is the analogue of the inverse
time 1/t .

Similarly, we focus on P0([x,∞], n), x > 1, and reparametrize the polynomial with a
change of variable, x = 1 + 1/t . One finds that the relevant scaling limit of Cn(t, t

′) is
obtained for t, t ′, n → ∞ keeping t̃ = t/n and t̃ ′ = t ′/n fixed and one obtains

Cn(x, y) ∝ nd/2Id/2−1

(
− 1

2t̃
− 1

2t̃ ′

)
, (52)
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where Im(y) is defined in (29). Thus Ĉn(x, y) → C(t̃ , t̃ ′) with the asymptotic behaviors (see
(120))

C(t̃ , t̃ ′) ∼
⎧
⎨

⎩

(
4 t̃ t̃ ′

(t̃+t̃ ′)2

) 1
2
, t̃ , t̃ ′ 	 1

1, t̃ , t̃ ′ � 1,

(53)

independently of d . Therefore, in complete analogy with (2) we propose the scaling form
for random polynomials

P0([x,∞], n) = A+
d,nn

−θ(2)h+(n(x − 1)), (54)

where A+
d,n, which is independent of x is such that limn→∞ logA+

d,n/ logn = 0 and
h+(y) → 1 for y 	 1 whereas h−(y) ∼ yθ(2) for y � 1.

Using the correlator Ĉn(x, y), one shows the statistical independence of the real roots
of Kn(x) in the four sub-intervals [−∞,−1], [−1,0], [0,1] and [1,+∞]. Consider for
instance the intervals [0,1] and [1,+∞]. Given that the real roots in the interval [0,+∞]
are concentrated, for n � 1, around x = 1 we introduce x = 1 − 1/t and y = 1 + 1/t ′ and
consider the limit t, t ′, n → ∞. One easily obtains

Ĉn(1 − 1/t,1 + 1/t ′) ∝ e−n/Max(t,t ′), (55)

which decays to 0 exponentially for large n. Therefore one concludes that the zeros of Kn(x)

in the sub-intervals [0,1] and [1,∞] are essentially independent. In a similar way, one
shows that the real roots of Kn(x) on the four subintervals delimited by ±1 are statistically
independent. Finally combining (51, 54) together with (55) one obtains the exact asymptotic
result for the probability of no real root as

P0([−∞,∞], n) ∝ n−2(θ(d)+θ(2)). (56)

We conclude this paragraph by presenting a heuristic argument which allows to connect
the zero crossing properties of the diffusion equation to the one of the real roots of Kn(x).
For that purpose, we consider the solution of the diffusion equation with random initial
condition (11) and we focus on φ(0, t), without any loss of generality. Following [25], one
observes that the solid angle integration in that expression can be absorbed into a redefinition
of the random field, yielding

φ(0, t) = S
1/2
d

(4πt)d/2

∫ L

0
drr(d−1)/2e−r2/t�(r), (57)

where Sd is the surface of the d-dimensional unit sphere and �(r) is given by [25]

�(r) = S
−1/2
d r− 1

2 (d−1) lim
�r→0

1

�r

∫

r<x<r+�r

dxψ(x), (58)

which is thus a random Gaussian variable of zero mean and correlations 〈�(r)�(r ′)〉 =
δ(r − r ′). Performing the change of variable u = r2 in (57), one obtains

φ(0, t) ∝
∫ L2

0
duu

d−2
4 e−u/t �̃(u), 〈�̃(u)�̃(u′)〉 = δ(u − u′). (59)
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On the other hand, if we focus on the real zeros of Kn(x) in the interval [0, x] with
x < 1, we know that these zeros accumulate in the vicinity of x = 1. Therefore, in terms of
x = 1 − 1/t one has

Kn(x) ∼ a0 +
n∑

i=1

i(d−2)/4e−i/t ai . (60)

By approximating the discrete sum in the above expression (60) by an integral, one sees that
Kn(x) is similar to the solution of the diffusion equation in (59) where L2 is replaced by n

and 1 − x by 1/t . Therefore one understands qualitatively why the zero crossing properties
of these two processes coincide.

Weyl Polynomials To analyse the correlation function in (16) in the large n limit we write
it as

Cn(x, y) = 〈Wn(x)Wn(y)〉 =
n∑

i=0

(xy)i

i! = exy (n + 1, xy)

(n + 1)
, (61)

where the last equality can easily be obtained using the recursion relation (n + 1, z) =
n(n, z) + e−zzn. The behavior of (n, z) for large n is analysed in detail in Appendix B.
From the results obtained in (124, 125), one sees that the correlation function Cn(x, y) in
(61) behaves differently for xy < n and xy > n.

For xy < n, (124) shows that (n + 1, xy) → (n + 1) for large n so that one finds that
Ĉn(x, y) → C(x, y) with

C(x, y) = exp

[
−1

2
(x − y)2

]
. (62)

Interestingly (62) shows that inside the interval [−√
n,

√
n], Wn(x) is exactly the GSP char-

acterizing the zero crossing properties of the diffusion field in the limit of infinite dimension
d → ∞ (14). Therefore one expects P0([−x, x], n), the probability that Wn(x) has no real
root in the interval [−x, x], with 1 	 x ≤ √

n, to behave as

P0([−x, x], n) ∝ exp (−2θ∞x). (63)

For xy > n, the behavior of Cn(x, y) is quite different. Indeed, using the asymptotic behavior
in (125), one shows that the relevant scaling limit is obtained for x, y,n → ∞ keeping
x̃ = x/

√
n and ỹ = y/

√
n fixed such that Ĉn(x, y) → C(x̃, ỹ) with

C(x̃, ỹ) =
√

x̃2 − 1
√

ỹ2 − 1

x̃ỹ − 1
, x̃ỹ ≥ 1. (64)

Performing the change of variable x → x̃ = √
n + 1/(

√
nt̃) one easily obtains that C(t̃ , t̃ ′)

behaves like in (53). Therefore, by analogy with (54), one deduces that, for 0 < x −√
n 	 1,

n � 1 keeping
√

n(x − √
n) fixed, one has

P0([x,∞], n) ∝ n− θ(2)
2 w(

√
n(x − √

n)), (65)

where w(u) ∼ cst for u 	 1 and w(u) ∝ uθ(2) for u � 1. In addition, following the argu-
ments presented above (see (55)), one shows that these two outer-intervals [−∞,−√

n] and
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[√n,+∞] are statistically independent, such that

P0([−∞,−√
n] ∪ [√n,+∞], n) ∝ n−θ(2). (66)

However, given the behavior of the correlator C(x, y) for xy > n in (62) the inner and outer
intervals are not independent and the probability of no root on the real axis is not the product
of the probabilities in (63) evaluated in x = √

n and the one in (66): the effect of these
correlations will be discussed below.

Binomial Polynomials In that case, one can extract information directly from the correla-
tion function in (17) by focusing in the limit x, y → 0. In that limit the normalized correla-
tion function Ĉn(x, y) is given by

Ĉn(x, y) = (1 + xy)n

[(1 + x2)(1 + y2)] n
2

∼ exp
[
−n

2
(x − y)2

]
, x, y 	 1. (67)

Thus in the large n limit, the probability P0([a, b], n) that binomial polynomials have no
real root in the interval [a, b] with a < b 	 1, n− 1

2 	 b − a behaves like

P0([a, b], n) ∝ exp
[−θ∞

√
n(b − a)

]
, a < b 	 1, n− 1

2 	 b − a, (68)

which is an exact statement. However it is a more difficult task to obtain the behavior of
P0([a, b], n) for an arbitrary interval [a, b] and eventually obtain the probability of no root
on the entire real axis for this class of polynomials (7): this will be achieved in the next
sections.

To conclude this paragraph, we have shown that the analysis of the correlation function
Cn(x, y) yields important exact results for the gap probabilities. Indeed, for generalized Kac
polynomials, we obtained the important results in (51) and (54) which yield the exact result
in (56). For Weyl polynomials the study of the correlation function allowed us to obtain the
results in (63) and (65). Finally, for Binomial polynomials we obtained, from the correlation
function, the asymptotic behavior in (68), which will be useful in the following.

3.2.2 Mean-Field Description: Poisson Approximation

To calculate the gap probabilities and the associated scaling functions, we first develop a
very simple mean field theory. This theory, albeit approximate as it neglects the correlations
between zeros, is simple, intuitive and qualitatively correct. We will see later how one can
improve systematically this mean field theory to get answers that are even quantitatively ac-
curate. As a first step, we neglect the correlations between the real roots and simply consider
that these roots are randomly and independently distributed on the real axis with some local
density ρn(x) at point x. Within this approximation the probability Pk([a, b], n) that these
polynomials have exactly k real roots satisfies the equation

∂Pk+1([a, b], n)

∂b
= ρn(b)[Pk([a, b], n) − Pk+1([a, b], n)], (69)

together with the normalization condition
∑

k≥0 Pk([a, b], n) = 1 and Pk([a, b], n) = δk,0

when a = b. In the large n limit (where one can omit the constraint Pk>n([a, b], n) = 0),
Pk([a, b], n) is given by a non-homogeneous Poisson distribution

Pk([a, b], n) = μk

k! e−μ, μ = 〈Nn[a, b]〉 =
∫ b

a

ρn(x)dx, (70)
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which clearly satisfies (69). In particular, this mean field approximation (70) yields the gap
probability

P0([a, b], n) = exp (−〈Nn[a, b]〉) = exp

(
−
∫ b

a

ρn(x)dx

)
. (71)

When applied to Generalized Kac polynomials Kn(x), for which we obtained 〈Nn[0, x]〉
in (35), this mean-field approximation (71) yields in the scaling limit n → ∞, 1 − x → 0,
n(1 − x) > 0 fixed

P0([0, x], n) = A−
d,nn

− 1
2π

√
d
2 exp

[
η−(n(1 − x))

]
, (72)

where, from (32), logA−
d,n = o(logn). This mean-field approximation thus yields the correct

scaling from for P0([0, x], n) as in (51), with the non trivial predictions for the exponent and
scaling function

θMF(d) = 1

2π

√
d

2
, h−(u) = exp

(∫ u

0
dyρK(y)

)
, (73)

with the asymptotic behavior h−(u) ∼ 1 for u 	 1 and, using the asymptotic behavior ob-
tained in (37), h−(u) ∼ uθMF(d).

Similarly, this mean-field approximation applied to Weyl polynomials Wn(x), for which
we obtained 〈Nn[−x, x]〉 in (44), yields the scaling form

P0([−x, x], n) ∼
{

exp (−2x/π), x <
√

n

exp (−2
√

n/π), x ≥ √
n.

(74)

Notice that this mean-field approximation gives an approximation of θMF∞ = π−1 =
0.31831 . . . (see (63)), which is consistent, using the relation θ(d) = 2−3/2θ∞

√
d for large

d , with (73).
Finally, if one uses this mean-field approximation to study binomial polynomials Bn(x),

one obtains, using the expression 〈Nn[a, b]〉 given in (47)

P0([a, b], n) = exp

[
−

√
n

π
(ArcTana − ArcTanb)

]
, (75)

which again, according to (68), gives the mean-field approximation for θMF∞ = π−1, as above.

3.2.3 Beyond Mean-Field: a Systematic Approach

We will now show that this mean field approximation (71) can actually be improved system-
atically. For that purpose, one considers the probability Pk([a, b], n) that such polynomials
as in (3, 6, 7) have exactly k real roots in the interval [a, b]. Following [22], one introduces
the generating function

P̂n(p, [a, b]) =
∞∑

k=0

pkPk([a, b], n), (76)

where P̂n(p, [a, b]) can be interpreted as a persistence probability with partial survival [22].
For a smooth process, it turns out that θ̂n(p, [a, b]) = − log (P̂n(p, [a, b])) depends contin-
uously on p: this was shown exactly for the random acceleration process (see (106) below)
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and approximately using the IIA—and further checked numerically—for the diffusion equa-
tion with random initial conditions [22]. Thus one has

θ̂n(p, [a, b]) = − log (P̂n(p, [a, b])) = −
∞∑

r=1

(log (p))r

r! 〈Nr
n([a, b])〉c, (77)

where the notation 〈. . .〉c stands for a connected average. Here we are interested in
P̂n(p = 0, [a, b]) = P0([a, b], n) and the idea, given that θ̂n(p = 1, [a, b]) = 0 is to expand
θ̂n(p, [a, b]) around p = 1 in an ε-expansion with p = 1 − ε. This yields

θ̂n(1 − ε, [a, b]) =
∞∑

r=1

ar,n([a, b])εr , (78)

where ar,n([a, b]) are linear combinations of the cumulants 〈Nm
n [a, b]〉c, with m ≤ r . For

instance,

a1,n([a, b]) = 〈Nn[a, b]〉, a2,n([a, b]) = 1

2

(〈Nn[a, b]〉 − 〈N2
n [a, b]〉c

)
, (79)

a3,n([a, b]) =
( 〈Nn[a, b]〉

3
− 〈N2

n [a, b]〉c
2

+ 〈N3
n [a, b]〉c

6

)
.

Thus one sees that if one restricts the ε-expansion in (78) to first order, and set ε = 1, one
recovers the mean-field approximation (71), using a1,n([a, b]) = 〈Nn[a, b]〉. Higher order
terms in this ε-expansion allow to improve systematically this mean-field approach.

Kac Polynomials for d = 2 We first illustrate this ε expansion for Kac polynomials Kn(x)

for d = 2 where we compute θ̂n(1−ε, [0, x]) up to order O(ε2). In that purpose, we compute
a2,n([0, x]). In Appendix C, we show that in the scaling limit (1 − x) → 0, and n → ∞
keeping the product n(1 − x) fixed one has, similarly to the (35) for the first moment,

〈N2
n [0, x]〉c = 〈N2

n [0,1]〉c − ν−(n(1 − x)) (80)

where ν−(y), given in (141), is such that ν−(y) → 0 for y 	 1 and

ν−(y) ∼
(

1

π
− 2

π2

)
logy, y � 1. (81)

Notice that 〈N2
n [0,1]〉c in (80) has been computed in [33], yielding for large n

〈N2
n [0,1]〉c =

(
1

π
− 2

π2

)
logn + o(logn), (82)

although higher order terms in this large n expansion are not known. Combining (78, 79,
80) together with the expression for ν−(y) in (141), one obtains in the scaling limit

θ̂n(1 − ε, [0, x]) =
(

ε + ε2

2

)
〈Nn([0,1])〉 − ε2

2
〈Nn([0,1])2〉c − ε

∫ y

0
duρK(u)

+ ε2
∫ y

0
du1

∫ ∞

u1

du2
(
K̃(u1, u2) − ρK(u1)ρ

K(u2)
)+O(ε3), (83)
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with y = n(1 − x). In this (83), ρK(u) is given in (31), and K̃(u1, u2), which we study in
detail in Appendix C, is essentially the two-point correlation function of real roots inside
the peak of the density around x = 1 (see bottom panel of Fig. 1). Setting ε = 1 in this
expression to order O(ε2) (83) one obtains, for d = 2

P0([0, x], n) = A−
d,nn

−θ(2)h−(n(x − 1)), θ(2) = π + 4

4π2
= 0.180899 . . . , (84)

h−(y) = exp

(∫ y

0
duρK(u) −

∫ y

0
du1

∫ ∞

u1

du2

(
K̃(u1, u2) − ρK(u1)ρ

K(u2)
))

, (85)

with logA−
d,n = o(logn) (see (32, 82)). Note that the value of the exponent θ(2) up to second

order as given in this (84) was computed in [22]. In the next sections, we will show, using
numerics, that this second order calculation (84) is a true improvement upon the mean-field
approximation (73).

Weyl Polynomials We now compute θ̂n(1 − ε, [−x, x]), x <
√

n for Weyl polynomials up
to order O(ε2). In that purpose we compute a2,n([−x, x]). In Appendix D, one shows that
for x <

√
n fixed and n � 1, one has

〈N2
n [−x, x]〉c = ν(x), (86)

with ν(x) given in (163). Combining (78, 79, 86) together with the expression for ν(x) in
(163), one obtains for large n

θ̂n(1 − ε, [−x, x]) = ε
2x

π
+ 2ε2

∫ x

0
ds(s − x)(W̃(s) − π−2) +O(ε3), (87)

where W̃(s), given in (160), is the two point correlation function of real roots in the interval
[−√

n,
√

n]. Setting ε = 1 in this expression up to order O(ε2) (87), one obtains, for x <
√

n

P0([−x, x], n) = exp

(
−2x

π
−
∫ 2x

0
ds(s − 2x)(W̃(s) − π−2)

)
. (88)

Using (165), one obtains its large x behavior as in (63) with the value of θ∞ up to order
O(ε2)

θ∞ = 1

π
−
∫ ∞

0
ds(W̃(s) − π−2) = 0.386471 . . . , (89)

which should be compared with the numerical value θ∞,sim = 0.417(3) [7].
If we focus instead on the outer intervals [−∞,−√

n] ∪ [√n,∞], this ε expansion is
essentially similar to the one performed for Kac polynomials and d = 2, given the behavior
of the correlator in (64). More interestingly, if we are interested in the computation of the
probability of no root on the real axis, this ε expansion is able to take into account (pertur-
batively) the correlations between the inner and outer intervals, which, as discussed below
(66), can be seen in the correlation function (62). Doing so, one obtains that

P0([−∞,∞], n) = P0([−
√

n,
√

n], n)P0([−∞,−√
n] ∪ [√n,∞], n)pn, (90)

where the computation of pn is similar to the one carried out in Appendix D where the
quantity Wn(t1, t2) in (154) involves t1 ∈ [−√

n,
√

n] and t2 ∈ [−∞,−√
n] ∪ [√n,∞] such
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that t1t2 < 1. The computation up to order O(ε2) shows that pn ∝ nτ with τ > 0. Therefore,
on the basis of this result together with (63, 66), one expects

P0([−∞,∞], n) ∼ n−γ exp (−2θ∞
√

n), (91)

where the exponent γ is a priori unknown. Below, we will confront this statement with
numerical simulations.

Binomial Polynomials We now focus on θ̂n(1 − ε,n) for binomial polynomials. In [21], it
was shown that for large n and all a, b > n− 1

2

〈N2
n [a, b]〉c ∝ β2〈Nn[a, b]〉, (92)

where β2 is a constant, independent of n,a and b. It has an analytic expression in term of an
integral involving elementary functions, with β2 = 0.571731 . . . . This expression (92) yields
in the large n limit, a2,n([a, b]) = (1/2 − β2)〈Nn[a, b]〉 which together with the asymptotic
behavior in (68) and the cumulant expansion of (78) allows to compute θ∞ up to order
O(ε2). We have checked that this coincides with the one obtained in (89). More generally,
one expects that for all integer m > 0

〈Nm
n [a, b]〉c ∝ βm〈Nn[a, b]〉, (93)

where βm is a constant, independent of n,a and b and in Appendix E we explicitly show the
mechanism leading to this relation (93) for k = 3. From these relations (93) and the struc-
ture of the cumulant expansion in (78), one expects that P0([a, b], n) ∝ exp [−ω〈Nn[a, b]〉],
where ω is a linear combination of the coefficients βm. Finally, this expression has to match
the exact asymptotic behavior of P0([a, b], n) for a < b 	 1 and n− 1

2 	 b − a derived in
(68). Thus one has ω = πθ∞ so that one obtains the exact result

P0([a, b], n) ∝ exp
[−√

nθ∞(ArcTanb − ArcTana)
]
, (94)

from which we obtain the exact expression for the probability of no real root for Bn(x) in
the large n limit as

P0([−∞,+∞], n) ∝ exp
(−√

nπθ∞
)
. (95)

Below, we check this analytical result (94) using numerical simulations.

3.2.4 Numerical Results

Kac Polynomials We first focus on the interval [0,1] and check numerically the scaling
forms for P0([0, x], n) in (2) for Kn(x) and for different values of d . In each case, this
probability is obtained by averaging over 104 realizations of the random variables ai ’s
in (3), drawn independently from a Gaussian distribution of unit variance. In [15], we
already presented numerical results for P0([0, x], n) in d = 2 and we also checked that
P0([0, x], n) ∝ n−θ(2) with θ(2) = 0.187(1). In the top panel of Fig. 4, we show a plot of
log[P0([0, x], n)/P0([0,1], n)] for d = 2 as a function of the scaled variable n(1 − x) for
different values of n. According to (2), together with the good collapse of the curves for
different values of n, this allows for a numerical computation of the scaling function h−(y).
We have checked that different distributions of the random coefficients either ai = ±1 or
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Fig. 4 Top: Plot of
log[P0([0, x], n)/P0([0,1], n)]
for Kac polynomials Kn(x) and
d = 2 as a function of n(1 − x)

for different degrees
n = 256,512,1024. The dotted
line is the result of the Mean
Field prediction (73) and the
solid line the result of the second
order calculation in the ε

expansion (83). Bottom: Plot of
nθ(3)P0([0, x], n) on a log-log
scale for Kac polynomials Kn(x)

and d = 3 with θ(3) = 0.238(4)

as a function of n(1 − x) for
different degrees
n = 256,512,1024

rectangular distribution yield the same scaling function h−(y), suggesting that this func-
tion is indeed universal. On the same figure, the dotted line is the result of Mean Field
approximation (73), or first order in the ε expansion, and the solid line is the analytical re-
sult of the second order calculation obtained in (84). In both cases, the integrals involved
were evaluated numerically using the Mathematica. As expected one observes on this plot
that the Mean Field calculation is only in qualitative agreement with the numerical results,
we recall in particular that θMF(2) = 1/2π = 0.159155 . . . . Interestingly, one sees that the
second order calculation is a clear improvement over the Mean Field calculation which is
in quite good agreement with the numerical results for the scaling function, in particular,
θ(2) = (π + 4)/4π2 = 0.180899 . . . . We have checked that this scaling (2) holds for other
values of d . In the bottom panel of Fig. 4, we show a plot of nθ(3)P0([0, x], n) for d = 3 and
θ(3) = 0.238(4) as a function of n(1 − x) for different degrees n = 256,512,1024. Again,
the value of θ(3) = 0.238(4) for which one obtains the best collapse of the curves for differ-
ent values of n is in good agreement with the values of θ(3) found for the diffusion equation
[6, 7].

We have also checked numerically our results for the gap probability in the outer intervals
(54). For that purpose, we notice that P0([x,∞], n) = P 0([0,1/x], n), which is easier to
compute numerically, where P 0([a, b], n) is the gap probability associated to the polynomial
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Fig. 5 Plot of nθ(2)P 0([0, x], n)

on a log-log scale, where Kn(x)

is defined in (96) as a function of
n(1 − x) for d = 3 and for
different values of
n = 128,256,512,1024

Kn(x) defined such that Kn(x) = xnKn(1/x) with

Kn(x) =
n−1∑

i=0

an−i (n − i)
d−2

4 xi + a0x
n. (96)

Thus, from (54) one expects that for 0 < 1−x 	 1, and n � 1, keeping the product n(1−x)

fixed one has

P 0([0, x], n) ∝ n−θ(2)h+(n(1 − x)), (97)

independently of d . In Fig. 5, we show a plot of nθ(2)P 0([0, x], n) as a function of n(1 − x)

for d = 3 and for different values of n = 128,256,512,1024. Again, the good collapse
obtained for θ(2) = 0.1875 corroborates the validity of the scaling in (54, 97).

Weyl Polynomials We first focus on the inner interval [−√
n,

√
n] and compute numeri-

cally the gap probability P0([−x, x], n) for x <
√

n. Here also, this probability was com-
puted by averaging over 104 different realizations of the random coefficients ai ’s. In the top
panel of Fig. 6, we show a plot of [logP0([−x, x], n)]n−1/2 as a function of x/

√
n < 1 for

different values of n = 40,90 and 150. According to our prediction in (63), P0([−x, x], n)

behaves exponentially for large x. From the slope of the straight line in the top panel of
Fig. 6, one extracts 2θ∞ = 0.845(3), in good agreement with previous numerical estimates
from the persistence probability for the diffusion equation in large dimension [6, 7]. On
the same figure, we have also plotted with a dotted line the result from the Mean Field ap-
proximation (74) and with a solid line the result up to second order in the ε expansion in
(87). Again, the second order term allows to improve significantly the Mean Field predic-
tion. We recall the estimate up to order O(ε2), 2θ∞ = 0.7729 . . . from (89). We now focus
on the outer intervals [−∞,−√

n] and [√n,+∞]. In the bottom panel of Fig. 6, we plot
nθ(2)P0([−x,−√

n]∪[√n,x], n) as a function of x/
√

n > 1 for different degrees n = 20,40
and 90. The fact that the curves for different n collapse on a single master curve is in agree-
ment with the scaling proposed in (66). Finally, we computed the gap probability on the full
real axis. In the top panel of Fig. 7, we plot [log(nγ P0([−x, x], n))]n−1/2 as a function of
x/

√
n for different values of n = 40,90 and 150. The exponent γ = 0.10(1), which is the

only fitting parameter is fixed to obtained the best collapse of the different curves in the large
x/

√
n limit. The solid line has a slope −2θ∞ = 0.845, which is also the value reached by
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Fig. 6 Top: Plot of
[logP0([−x, x], n)]n−1/2 for
Weyl polynomials Wn(x) (6) as a
function of x/

√
n < 1 for

different values of n = 40,90 and
150. The dotted line is the result
of the Mean Field approximation
whereas the solid one is the result
of the expansion up to or-
der O(ε2) in (87). Bottom: Plot of
nθ(2)P0([−x,−√

n]∪[√n,x], n)

as a function of x/
√

n > 1 for
different degrees n = 20,40
and 90

log(nγ P0([−x, x], n))n−1/2 for large x. This fact is in complete agreement with the scaling
proposed in (91). The fact that γ < θ(2) arises from the correlations between the inner and
outer intervals.

Binomial Polynomials Finally, we have checked the exact result in (94) for binomial poly-
nomials (7). For that purpose, we have computed numerically P0([−x, x], n) by averaging
over 105 different realizations of the random coefficients ai ’s. In the bottom panel of Fig. 7,
we show a plot of [logP0([−x, x], n)]n−1/2 as a function of x for different values of n = 40
and 90. The solid line is the analytic prediction from (94) with θ∞ = 0.42(1), consistent with
our previous estimates from Weyl polynomials (see top panel of Fig. 7). The good agreement
with the numerics confirms also the exact result for the probability that these polynomials
have no real root on the real axis in (95).

3.3 Probability of k Real Roots: Large Deviation Function

We now generalize our analysis and study the probability Pk([a, b], n) that such polynomials
(3, 6, 7) have exactly k real roots [19] in a given interval [a, b].
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Fig. 7 Top: Plot of
[log(nγ P0([−x, x], n))]n−1/2

for Weyl polynomials Wn(x) (6)
as a function of x/

√
n for

different values of n = 40,90 and
150. Here γ = 0.10(1) and the
solid line has slope −0.845.
Bottom: Plot of
[logP0([−x, x], n)]n−1/2 for
binomial polynomials Bn(x) (7)
as a function of x for different
values of n = 40 and 90. The
solid line is the exact result in
(94) with θ∞ = 0.42(1), which is
the only fitting parameter here

3.3.1 Mean Field Approximation: Poisson Approximation

One first considers the Mean Field approximation introduced above where one assumes that
the real roots are totally independent and randomly distributed with density ρn(x). This leads
to (70)

Pk([a, b], n) = 〈Nn[a, b]〉k
k! e−〈Nn[a,b]〉. (98)

If we focus on the limit n � k � 1, keeping the ratio y = k/〈Nn[a, b]〉 fixed, one has

logPk([a, b], n) ∼ −〈Nn[a, b]〉ϕMF

(
k

〈Nn[a, b]〉
)

, ϕMF(y) = 1 + y logy − y, (99)

where we have used the Stirling’s formula log (k!) = (k + 1
2 ) logk − k +O(1). We will see

below (through scaling analysis as well as numerics) that this Mean Field approximation
provides the correct scaling form for Pk([a, b], n) (although the exact computation of ϕ(y)

certainly demands a more sophisticated analysis). Let us present the consequences of this
scaling form in (99) for the different polynomials under study.
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Kac Polynomials Let us define qk(n) = Pk([0,1], n). In that case, we have seen in (32)

that 〈Nn([0,1])〉 ∼ 1
2π

√
d
2 logn so that one expects the scaling form

logqk(n) ∝ − lognϕ

(
2π

√
2

d

k

logn

)
. (100)

For the special case of Kac polynomials (d = 2), this scaling form, in the neighborhood of
k = logn/2π , is consistent with the rigorous result [33] that in this neighborhood qk(n) is a
Gaussian with mean logn/2π and variance Vn ∼ ( 1

π
− 2

π2 ) logn (82) in the large n limit.

Weyl Polynomials Let us define qk(n) = Pk([−∞,∞], n). According to (45), which tells
us that 〈Nn[−∞,∞]〉 ∼ (2/π)

√
n, and the scaling form in (99) one expects

logqk(n) ∝ −√
nϕ

(
π

2

k√
n

)
. (101)

Binomial Polynomials Let us define similarly qk(n) = Pk([−∞,+∞], n). In that case,
according to (48) which tells us that 〈Nn[−∞,∞]〉 = √

n, and the scaling form in (99) one
expects

logqk(n) ∝ −√
nϕ

(
k√
n

)
. (102)

In the following, we will check these scaling forms (100–102) numerically.

3.3.2 A More Rigorous Approach for a Smooth Gaussian Stationary Process

We illustrate this approach on the diffusion equation with random initial conditions (1),
which is the underlying stochastic process describing the statistics of real roots of these ran-
dom polynomials. We thus consider the probability pk(t,L) that the diffusing field φ(x, t)

crosses zero exactly k times up to time t . Let us first consider the regime 1 	 t 	 L2.
In this regime, pk(t,L) is given by the probability Pk(T ) that X(T ) crosses zero exactly k

times where X(T ) is a GSP with correlations a(|T − T ′|) = [cosh(|T − T ′|/2)]−d/2, where
T = log t . Since, a(T ) = 1 − d

16T 2 + o(T 2) for small T , this GSP is a smooth process with
a finite density of zero crossings given by the Rice’s formula μ = [−a′′(0)]1/2/π [27]. We
propose the following scaling form for large T and large k, with k/T fixed

logPk(T ) = −T ϕ

(
k

μT

)
. (103)

To understand the origin of this scaling form, let us consider the generating function
P̂(p,T ) =∑∞

k=0 pkP(k, T ) as in (76). One can show [22] that P̂(p,T ) ∼ exp[−θ̂ (p)T ],
where for a smooth GSP θ̂ (p) depends continuously on p. If the scaling in (103) holds,
one gets by steepest descent method valid for large T , θ̂ (p) = Minx>0[μx logp − ϕ(x)].
Inverting the Legendre transform we get

ϕ(x) = Max0≤p≤2[μx logp + θ̂ (p)]. (104)



Real Roots of Random Polynomials and Zero Crossing Properties 259

Notice that although θ̂ (p) is a priori defined on the interval [0,1], the computation of ϕ(x)

involves an analytical continuation of θ̂ (p) on [0,2]. Going back to real time t , (103) then
yields a rather unusual scaling form valid in the limit 1 	 t 	 L2

logpk(t,L) ∼ − log tϕ

(
k

μ log t

)
. (105)

In the opposite limit t � L2, one simply replaces t in (105) by L2. Translating into random
polynomials, this regime corresponds to (1−x) 	 n−1 since one just replaces t by 1/(1−x)

and L2 by the degree n as discussed before. Hence, in this regime, we arrive at the announced
scaling form for qk(n) in (100). This approach can be extended straightforwardly to the other
classes of polynomials, yielding the scaling forms in (101, 102).

Of course, despite the exact formula (104), the function ϕ(x) remains very hard to com-
pute, simply because θ̂ (p) is, in many cases, unknown. However, for the random accelera-
tion process (RAP), sometimes called in the literature “integrated Brownian motion”

d2x(t)

dt2
= η(t), 〈η(t)η(t ′)〉 = δ(t − t ′), (106)

where η(t) is a white noise for which μRAP = √
3/(2π), θ̂RAP(p) has been computed exactly

[34, 35], yielding θ̂RAP(p) = 1
4 [1 − 6

π
sin−1(

p

2 )]. By performing the Legendre transform
(104) one obtains

ϕRAP(x) =
√

3

2π
x log

(
2x√

x2 + 3

)
+ 1

4

(
1 − 6

π
ArcSin

(
x√

x2 + 3

))
, (107)

with the asymptotic behaviors

ϕRAP(x) ∼

⎧
⎪⎪⎨

⎪⎪⎩

1
4 +

√
3

2π
x logx, x → 0

3
√

3
16π

(x − 1)2, x → 1
√

3
2π

x log 2, x → ∞,

(108)

which gives back the exact result ϕRAP(0) = 1/4 [36, 37].

3.3.3 Numerical Results

In [15], we have checked numerically the scaling form (105) for the diffusion equation with
random initial conditions. Here, we have computed numerically these probabilities qk(n)

for the different polynomials under study. This was done by averaging over 104 different
realizations of the random coefficients ai ’s. In the top panel of Fig. 8, we show a plot of
−[logqk(n)]/ logn as a function of 2πk/ logn for Kac polynomials (3) with d = 2 and for
different values of n = 20,40,80 and 100. This suggests that the different points fall on a
single master curve, which is in rather good agreement with the scaling form proposed in
(100). Similarly, in the bottom panel of Fig. 8, we show a plot of −[logqk(n)]n−1/2 as a
function of k/

√
n for binomial polynomials (7) for different values of n = 31,63,127 and

255. Here also, the fact the points fall a single master curve is in good agreement with the
scaling form in (102). We have also checked that a similar scaling, as in (101) holds for
Weyl polynomials (6).
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Fig. 8 Top: Plot of
− log(qk(n)/ logn) as a function
of 2πk/ logn for Kac
polynomials (3) with d = 2 and
for different values of
n = 20,40,80 and 100. Bottom:
Plot of − log (qk(n))n−1/2 as a
function of k/

√
n for binomial

polynomials (7) for different
values of n = 31,63,127 and 255

3.4 Distribution of the Maximum of Real Roots

Up to now, we have mainly focused on the distribution of the minimum λmin of the ab-
solute values {|λi |} of the real roots of these polynomials. Indeed, the gap probability
P0([−x, x], n) is just the probability that λmin is larger than x > 0. We now instead focus on
the distribution of the maximum λmax of the {|λi |}.

3.4.1 Mean Field Approximation

As a first approach, we consider the Mean Field or Poissonian approximation introduced
above, where one neglects the correlations between the real roots. Then, for any random
polynomial Qn(x) =∑n

i=0 bix
i , the probability that λmax ≤ x is simply the probability that

Qn(x) has no real root in [−∞,−x] ∪ [x,+∞]. Therefore, within the Mean Field approxi-
mation one has

Proba.(λmax ≤ x,n) = exp

(
−2
∫ ∞

x

ρn(t)dt

)
. (109)
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Taking the derivative of this expression (109) with respect to x, one obtains the probability
distribution function (pdf) pmax(x,n) of the maximum λmax as

pmax(x,n) = 2ρn(x) exp

(
−2
∫ ∞

x

ρn(t)dt

)
. (110)

To obtain the large x behavior of pmax(x,n) one computes the one of ρn(x) whose expres-
sion is given by

ρn(x) =
√

cn(x)(c′
n(x)/x + c′′

n(x)) − [c′
n(x)]2

2πcn(x)
, cn(x) =

n∑

i=0

〈b2
i 〉x2i . (111)

For large x, one has cn(x) = x2n〈b2
n〉 + x2n−2〈b2

n−1〉 + O(x2n−4) which gives ρn(x) ∼√
〈b2

n−1〉/〈b2
n〉/(πx2). Finally, from (110), one obtains for x � 1

pmax(x,n) ∼ 2ρn(x) ∼ 2

πx2

√
〈b2

n−1〉
〈b2

n〉
. (112)

3.4.2 Exact Result for the Tail

In fact, the tail of the distribution can be computed exactly by noting that

Proba.(λmax ≤ x,n) = P 0

([
− 1

x
,

1

x

]
, n

)
, (113)

where P 0([a, b], n) is the gap probability associated to the polynomial Qn(x) defined such
that Qn(x) = xnQn(1/x). Similarly, we denote ρn(x) the mean density of real root associ-
ated to Qn(x). From this exact identity (113), valid for all polynomials Qn(x) and all n ≥ 1,
one obtains the asymptotic behavior

Proba.(λmax ≤ x,n) = 1 − 2
ρn(0)

x
+ o(x−1), (114)

where we have simply used the definition of ρn(0), provided it is well defined, which is the
case for Gaussian random polynomials. From this asymptotic behavior (114), one obtains
the pdf pmax(x,n) of the maximum λmax for large x > 0 as

pmax(x,n) ∼ 2
ρn(0)

x2
, ρn(0) = 1

π

√
〈b2

n−1〉
〈b2

n〉
(115)

where we have used the formula (111) to compute ρn(0). For the various polynomials
under consideration here, one thus obtains such a power law tail (115) with ρn(0) =
π−1((n − 1)/n)

d−2
4 for Kac polynomials, ρn(0) = √

n/π for Weyl polynomials and bino-
mial polynomials. This result shows in particular that the mean value of λmax is not defined
for these polynomials.

It is interesting to note that the Mean Field approximation (112) gives the exact result for
this algebraic tail (115). This might be understood by noting that, apart from a short range re-
pulsion, the real roots of these polynomials are actually weakly correlated. For instance, for
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Weyl polynomials, we show in Appendix D, see (162), that the two-point (connected) corre-
lation function of the real roots inside the interval [−√

n,
√

n] decays faster than exponen-
tially at large distance (see also [21] for similar properties of Kn(x) and Bn(x)). On the other
hand, the marginal distribution of a single real root is nothing else but ρn(x)/〈Nn[−∞,∞]〉
which decays algebraically ρn(x) ∼ 1/x2 for large x. Given that these real roots are weakly
correlated, we expect that the distribution of the maximum of these real roots is given by a
Fréchet distribution, which indeed has a power law tail, as we found here (115).

3.4.3 Numerical Results

We have checked numerically this exact asymptotic behavior (115) for the three classes
of random polynomials (3, 6, 7). In all the three cases the pdf of the maximum λmax was
obtained by averaging over 105 different realizations of the random Gaussian variables ai ’s.
In the top panel of Fig. 9, we show a plot of pmax(x,n) as a function of x for Kac polynomials
and d = 2, for different values of n = 8,16 and 32. Notice that the exact result in (115),
which is plotted here with a dotted line, is in principle true for all n ≥ 1 so that it is not
necessary to perform numerics for polynomials of large degree. This figure shows a good
agreement between our analytic result and the numerics. Similarly, in the bottom panel of
Fig. 9, we have plotted pmax(x,n)/

√
n for Weyl polynomials Wn(x) and for different values

of n = 8,16 and 32. Here again, the agreement with the analytical result in (115) is quite
good.

4 Conclusions and Perspectives

In conclusion, we have investigated different statistical properties of the real roots of three
different types of real random polynomials (3, 6, 7). In these three classes, the mean density
of real roots exhibit a rich variety of behaviors, as shown in Figs. 1–3. We have first focused
on gap probabilities (56, 91, 95) which were shown to be closely related to the persistence
probability for the diffusion equation with random initial conditions in dimension d (1, 2).
We proposed a Mean Field approximation to compute the exponents as well as the universal
scaling functions describing these gap probabilities. Furthermore, we showed how to im-
prove systematically this MF approximation (see Fig. 4, 6) using an ε-expansion based on
the so called persistence with partial survival. In the case of binomial polynomials Bn(x)

(7), this allows to obtain exact results for the gap probability (94). Our main results for the
gap probability q0(n) on the full real axis are summarized in Fig. 10. We hope that these
connections may help to obtain exact results for the exponent θ(d), which remains a chal-
lenge. Besides, we extended our analysis to the probability that these random polynomials
have exactly k real roots in a given interval [a, b]. We have shown, in the three cases, that
this probability has an interesting scaling form characterized by a large deviation function
(100–102). We proposed a Mean Field approximation which reproduces qualitatively these
scaling forms, which were further checked numerically (see Fig. 8). A similar question was
asked in the past for Ginibre real matrices: what is the probability that such n × n matrices
has exactly k real roots? Quite recently, in [38, 39], Akemann and Kanzieper obtained an
exact formula for this probability. In that case, the mean number of real roots grows like√

n and our MF approximation would therefore suggest a scaling form for this probability
similar to (101). It would be very interesting to extract the large deviation function from an
asymptotic analysis of the exact result of [38, 39].

Finally, we computed the pdf of the largest real root of these random polynomials. We
showed that for a wide class of random polynomials, this pdf has an algebraic tail with
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Fig. 9 Top: pmax(x,n) for Kac
polynomials Kn(x) (3) and d = 2
as a function of x for different
values of n = 8,16 and 32. The
dotted line is the exact result for
the tail of the distribution (115).
Bottom: pmax(x,n)/

√
n for Weyl

polynomials Wn(x) (6) as a
function of x for different values
of n = 8,16 and 32. The dotted
line is the exact result for the tail
of the distribution (115)

Fig. 10 Summary of the main results for the probability of no root on the full real axis q0(n) for the three
different classes of polynomials Kn(x),Wn(x) and Bn(x)

exponent −2 as shown in (115) and it would certainly be interesting to extend these results
to the case of non-Gaussian random polynomials.
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Appendix A: Calculation of the Mean Density for Generalized Kac’s Polynomials

In this appendix, we give some details concerning the computation of the mean density and
the mean number of real roots for Kac’s polynomials Kn(x) (3).

A.1 Scaling Form

The starting point of the calculation is the formula for the density ρn(x) given in (21), which
using (15) gives

ρn(x) = 1

π

√
sd/2+1,n(x)

1 + x2sd/2−1,n(x)
−
(

sd/2,n(x)

1 + sd/2−1(x)

)2

, with sk,n(x) =
n∑

i=1

ikx2i−2. (116)

In the limit n � 1, and |1 − x| 	 1 keeping y = n(1 − x) fixed, sk,n(x) can be viewed as a
Riemann sum, thus

sk,n(x) ∼ nk+1
∫ 1

0
dxxke−2ux, u = n(1 − x). (117)

Finally using (117) together with (116) yield the formula (28) given in the text:

ρn(x) = nρK(n(1 − x)), ρK(y) = 1

π

√
Id/2+1(y)

Id/2−1(y)
−
(

Id/2(y)

Id/2−1(y)

)2

, (118)

Im(y) =
∫ 1

0
dxxm exp (−2yx). (119)

A.2 Asymptotic Expansions

To compute the asymptotic behaviors of the function ρK(y) in (28), one needs the asymp-
totic behaviors of Im(y) defined above (119).

A.2.1 The Limit y → ∞

In that limit, one writes Im(y) as

Im(y) = y−1−m

∫ y

0
duume−2u = y−1−m

∫ ∞

0
duume−2u +O(yme−2y)

= (2y)−1−m(1 + m) +O(yme−2y), (120)

which, together with (28), gives the first line of the formula given in (30) in the text.
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A.2.2 The Limit y → −∞
Because of several cancellations occurring in ρK(y) in the limit y → −∞ one needs the
three first terms in the asymptotic behavior of Im(y) in that limit:

Im(y) = |u|−1−m

∫ |y|

0
duume2u

= e2|y|
(

1

2|y| − m

4y2
+ m(m − 1)

8|y|3 +O(y−4)

)
, (121)

which after a tedious but straightforward calculations, using (28), gives the second line of
the formula given in (30) in the text.

Appendix B: Calculation of the Mean Density for Real Weyl’s Polynomials

In this section, we present the details of the calculation leading to the scaling form given in
(43). We start with the expression for the mean density given in (41) with x = u

√
n:

ρn(x) = ρn(
√

nu) = 1

π

√

1 + nn+1u2n(u2 − 1 − n−1)

enu2
(n + 1, nu2)

− n2n+1u4n+2

(enu2
(n + 1, nu2))2

. (122)

We want to obtain the limit n → ∞, keeping u fixed, in the above equation (122). For that
purpose, we need the large n behavior of (n,nu2) for large n and u fixed. One writes

(n,nu2) = nn

∫ ∞

u2

dx

x
e−n(x−logx) = nn

∫ ∞

logu2
dye−nf (y), f (y) = y − logy, (123)

and under this form (123) we can now perform a saddle-point calculation. The function
f (y) has a single minimum at y = 1 and therefore we expect that the large n behavior of the
expression in (123) will depend on the sign of u − 1. For u < 1 the minimum of f (y) lies
in the interval of integration in (123) and one gets a result independent of u

(n + 1, nu2) = √
2πnn+1/2e−n

(
1 +O(n−1/2)

)
, u < 1. (124)

On the other hand, for u > 1 the minimum of f (y) in (123) lies outside the interval of
integration and one gets instead

(n + 1, nu2) = nn−1e−nu2 u2n

u2 − 1

(
1 − 1

n

u2

(u2 − 1)2
+O(n−2)

)
, u > 1. (125)

Using the asymptotic expansion for u < 1 (124) together with (122) one obtains straightfor-
wardly that for u < 1 fixed and large n

ρn(
√

nu) = 1

π
+O(n−1/2), u < 1, (126)

yielding, in the limit n → ∞ the expression (43) given in the text. Similarly, using (125)
together with (122), one gets for u > 1 fixed and large n

ρn(
√

nu) = O(n−1), u > 1, (127)

yielding, in the limit n → ∞ the expression (43) given in the text.
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Appendix C: Computation of 〈N2
n([0,x])〉c for Kac’s Polynomials and d = 2

C.1 Scaling Form

In this appendix, we give the details of the computation of 〈N2
n ([0, x])〉 which lead to for-

mula (80) given in the text. We start from the general formula valid for all n [40] (see also
[21])

〈N2
n ([0, x])〉 =

∫ x

0
dtρn(t) +

∫ x

0
dt1

∫ x

0
dt2Kn,2(t1, t2), (128)

where Kn,2(t1, t2) is the 2-point correlation function of real roots of Kn(x), given by

Kn,2(t1, t2) = 1

4π2
√

det�n(t1, t2)

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e− 1

2 (Y�n(t1,t2),Y )dy1dy2, (129)

where Y = (y1, y2), �n(t1, t2) is the 4 × 4 covariance matrix of (Kn(t1),K
′
n(t1),Kn(t2),

K ′
n(t2)) and �n(t1, t2) is the 2 × 2 matrix obtained by removing the first and the third rows

and columns from �n(t1, t2)
−1. In the limit 0 < 1 − t1 	 1, 0 < 1 − t2 	 1 and n → ∞,

keeping u1 = n(1 − t1), u2 = n(1 − t2) fixed one has

〈Kn(t1)Kn(t2)〉 = ng(u1 + u2), g(x) = 1 − e−x

x
,

〈Kn(t1)K
′
n(t2)〉 = 〈K ′

n(t1)Kn(t2)〉 = −n2g′(u1 + u2),

〈K ′
n(t1)K

′
n(t2)〉 = n3g′′(u1 + u2).

(130)

Using these relations (130), one obtains the matrix �n(t1, t2) in this scaling limit as

�n(t1, t2) =

⎛

⎜⎜⎝

ng(2u1) −n2g′(2u1) ng(u1 + u2) −n2g′(u1 + u2)

−n2g′(2u1) n3g′′(2u1) −n2g′(u1 + u2) n3g′′(u1 + u2)

ng(u1 + u2 −n2g′(u1 + u2) ng(2u2) −n2g′(2u2)

−n2g′(u1 + u2) n3g′′(u1 + u2) −n2g′(2u2) n3g′′(2u2)

⎞

⎟⎟⎠ , (131)

from which one gets

det�n(t1, t2) = n8 det �̃(u1, u2), (132)

�̃(u1, u2) =

⎛

⎜⎜⎝

g(2u1) −g′(2u1) g(u1 + u2) −g′(u1 + u2)

−g′(2u1) g′′(2u1) −g′(u1 + u2) g′′(u1 + u2)

g(u1 + u2 −g′(u1 + u2) g(2u2) −g′(2u2)

−g′(u1 + u2) g′′(u1 + u2) −g′(2u2) g′′(2u2)

⎞

⎟⎟⎠ . (133)

From the structure of �n(t1, t2) in the scaling limit (131), one obtains the one of �n(t1, t2)

in (129) as

�n(t1, t2) = n−3�̃(u1, u2), (134)

�̃(u1, u2) =
(

A(u1, u2) B(u1, u2)

B(u1, u2) C(u1, u2)

)
, (135)

where �̃(u1, u2), is obtained by removing the first and the third rows and columns from
�̃(u1, u2)

−1. The functions A(u1, u2),B(u1, u2),C(u1, u2) have complicated expressions
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not given here which can be easily computed e.g. using Mathematica. Using the scaling
forms (132, 134) one obtains Kn,2(t1, t2) in (129) in the scaling limit as

Kn,2(t1, t2) = n2K̃(u1, u2) (136)

K̃ = (det �̃)−1/2

π2AC(1 − (δ)2)

(
1 + δ√

1 − (δ)2
ArcSin δ

)
, δ = B√

AC
, (137)

where we used the notation �̃ ≡ �̃(u1, u2) and the expression [21] (see also [40])

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e− 1

2 (Ay2
1+2By1y2+Cy2

2 )dy1dy2 = 4

AC(1 − (δ)2)

(
1 + δ√

1 − (δ)2
ArcSin δ

)
.

(138)

Using this scaling form (136), together with the one for the density in (28), one obtains
〈Nn([0, x])2〉c in the limit 0 < (1 − x) 	 1, with n → ∞ keeping y = n(1 − x) fixed as

〈Nn([0, x])2〉c ∼
∫ n

y

ρK(u)du +
∫ n

y

du1

∫ n

y

du2(K̃(u1, u2) − ρK(u1)ρ
K(u2)). (139)

Alternatively, one can write (139) in the large n limit as

〈Nn([0, x])2〉 − 〈Nn([0,1])2〉 = −ν−(n(1 − x)) (140)

ν−(y) =
∫ y

0
duρK(u) + 2

∫ y

0
du1

∫ ∞

u1

du2(K̃(u1, u2) − ρK(u1)ρ
K(u2)). (141)

C.2 Large Argument Behavior of ν−(y)

To compute ν−(y) in the large y limit, one compute dν−(y)/dy from (141)

dν−(y)

dy
= ρK(y) + 2

∫ ∞

y

du2(K̃(y,u2) − ρK(y)ρK(u2)). (142)

The large y behavior of ρK(y) has been computed previously (30). To extract the large y

behavior of dν−(y)/dy, one thus needs to compute the behavior of K̃(u1, u2) for u1, u2 � 1.
We first analyse the behavior �̃(u1, u2) in (133) for u1, u2 � 1. This yields

�̃(u1, u2) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1
2u1

1
4u2

1

1
u1+u2

1
(u1+u2)2

1
4u2

1

1
4u3

1

1
(u1+u2)2

2
(u1+u2)3

1
u1+u2

1
(u1+u2)2

1
2u2

1
4u2

2
1

(u1+u2)2
2

(u1+u2)3
1

4u2
2

1
4u3

2

⎞

⎟⎟⎟⎟⎟⎟⎠
, (143)

from which one gets

det �̃(u1, u2) ∼ 1

256(u1u2)4

(
u1 − u2

u1 + u2

)8

. (144)
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From (143), one gets the behavior of the matrix �̃ in (135) as

A(u1, u2) ∼ 8u3
1

(
u1 + u2

u1 − u2

)4

(145)

B(u1, u2) ∼ 16
u2

1u
2
2

u1 + u2

(
u1 + u2

u1 − u2

)4

(146)

C(u1, u2) ∼ 8u3
2

(
u1 + u2

u1 − u2

)4

(147)

which gives δ = B/
√

AC as

δ(u1, u2) ∼ 2
√

u1u2

u1 + u2
. (148)

Finally, using (145–148) together with (30) in d = 2 one gets

K̃(u1, u2) − ρK(u1)ρ
K(u2) ∼ − 1

π2(u1 + u2)2
+ 1

2π2√u1u2

|u1 − u2|
(u1 + u2)2

ArcSin
2
√

u1u2

u1 + u2
.

(149)

Therefore, from (142), one gets

dν−(y)

dy
∼ 1

y

(
2

π2
− 1

π

)
+O(y−2), (150)

where we have used the identity

∫ ∞

1

dv√
v

v − 1

(v + 1)2
ArcSin

(
2
√

v

v + 1

)
= π

2
− 1. (151)

Finally, one gets from (150) that

ν−(y) ∼
(

2

π2
− 1

π

)
logy +O(1). (152)

Appendix D: Computation of 〈N2
n([−x,x])〉c for Weyl Polynomials

D.1 Scaling Form

In this appendix we give the detail of the computation of 〈Nn([−x, x])2〉 which leads to for-
mula (86) in the text. Here again we start from the general formula valid for all n, similarly
to (128)

〈N2
n ([−x, x])〉 =

∫ x

−x

dtρn(t) +
∫ x

−x

dt1

∫ x

−x

dt2Wn,2(t1, t2), (153)

where Wn,2(t1, t2) is the 2-point correlation function of the real roots of Wn(x), given by
formula (129) where Kn(x) is replaced by Wn(x):

Wn,2(t1, t2) = 1

4π2
√

det�n(t1, t2)

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e− 1

2 (Y�n(t1,t2),Y )dy1dy2, (154)
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where Y = (y1, y2), �n(t1, t2) is the 4 × 4 covariance matrix of (Wn(t1),W
′
n(t1),Wn(t2),

W ′
n(t2)) and �n(t1, t2) is the 2 × 2 matrix obtained by removing the first and the third rows

and columns from �n(t1, t2)
−1. In the limit n → ∞, keeping t1 <

√
n, t2 <

√
n fixed one

has

〈Wn(t1)Wn(t2)〉 = et1t2 ,

〈W ′
n(t1)Wn(t2)〉 = t2e

t1t2 ,

〈Wn(t1)W
′
n(t2)〉 = t1e

t1t2 ,

〈W ′
n(t1)W

′
n(t2)〉 = (1 + t1t2)e

t1t2 ,

(155)

from which we obtain �n(t1, t2) = �̃(t1, t2) as

�̃(t1, t2) =

⎛

⎜⎜⎜⎝

et2
1 t1e

t2
1 et1t2 t1e

t1t2

t1e
t2
1 (1 + t2

1 )et2
1 t2e

t1t2 (1 + t1t2)e
t1t2)

et1t2 t2e
t1t2 et2

2 t2e
t2
2

t1e
t1t2 (1 + t1t2)e

t1t2 t2e
t2
2 (1 + t2

2 )et2
2

⎞

⎟⎟⎟⎠ . (156)

The determinant is easily obtained as

det �̃(t1, t2) = e(t1+t2)2
(

4 sinh2

(
(t1 − t2)

2

2

)
− (t1 − t2)

4

)
. (157)

From �̃(t1, t2) in (156), one obtains �n(tt , t2) = �̃(t1, t2) for large n as

�̃(t1, t2) =
(

D(t1, t2 E(t1, t2))

E(t2, t2) F (t1, t2)

)
(158)

with

D(t1, t2) = et2
1 +2t2

2

�̃(t1, t2)
(1 − e−(t1−t2)2

(1 + (t1 − t2)
2)),

E(t1, t2) = e3t1t2

�̃(t1, t2)
(1 − e(t1−t2)2

(1 − (t1 − t2)
2)),

F (t1, t2) = e2t2
1 +t2

2

�̃(t1, t2)
(1 − e−(t1−t2)2

(1 + (t1 − t2)
2)).

(159)

Finally, using these expressions (159) together with the formula in (138), one obtains from
(154) that Wn,2(t1, t2) = W̃(t1 − t2) with

W̃(s) = 1

π2

((1 − e−s2
)2 − s4e−s2

)
1
2

1 − e−s2

(
1 + δ(s)√

1 − (δ(s))2
ArcSin δ(s)

)
, (160)

with

δ(s) = e−s2/2(e−s2 + s2 − 1)

1 − e−s2 − s2e−s2 . (161)

Notice that W̃(s) is the two point correlation function of real zeros of Wn(x). Interestingly,
this correlation function in (160) coincides (up to a multiplicative prefactor π−2) with the
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correlation of straightened zeros of Bn(x) obtained in [21]. Its asymptotic behaviors are
given by

W̃(s) ∼
{ |s|

4π
, s → 0

1
π2 + s4e−s2

2π2 , s → ∞.
(162)

Finally, using the expression (153) together with (154) one has for 0 < x <
√

n, in the
limit n → ∞

〈N2
n ([−x, x])〉c = ν(x), ν(x) = 2x

π
+ 2

∫ 2x

0
ds(2x − s)(W̃(s) − π−2). (163)

D.2 Large Argument Behavior of ν(x)

To analyse the large x behavior of ν(x), one computes dν(x)/dx and gets immediately

lim
x→∞

dν(x)

dx
= 2

π
+ 4

∫ ∞

0
ds(W̃(s) − π−2) (164)

such that

ν(x) ∝ 2ν∞x, x � 1 (165)

with ν∞ = 0.181988 . . . , which leads to the value of θ∞ up to order O(ε2) given in (89).

Appendix E: Computation of 〈N3
n([a,b])〉c for Binomial Polynomials

In this appendix, we give the detailed calculation of 〈N3
n ([a, b])〉c which leads to the formula

(93) given in the text, for m = 3. We start with the general formula (see for instance [21]):

〈N3
n ([a, b])〉c = 〈Nn[a, b]〉 + 3〈N2

n [a, b]〉c +
∫ b

a

dt1

∫ b

a

dt2

∫ b

a

dt3(Bn,3(t1, t2, t3) (166)

− 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)), (167)

where Bn,m is the m-point correlation function of real roots of Bn(x). In (166), Bn,2(t1, t2) is
given by the formula (129) where Kn(x) is replaced by Bn(x) and Bn,3(t1, t2, t3) is formally
given by (see for instance [21])

Bn,3(t1, t2, t3) =
∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

∫ ∞

−∞
dy3|y1y2y3|Dn,3(0, y1,0, y2,0, y3; t1, t2, t3), (168)

where Dn,3(x1, y1, x2, y2, x3, y3) is the joint distribution density of (Bn(t1),B
′
n(t1), (Bn(t2),

B ′
n(t2), (Bn(t3),B

′
n(t3)). According to (92), the two terms in (166) have the desired form

(93) for large n. To study the triple integral in (167) in the large n limit, we will use the
results obtained in [21]:

lim
n→∞

[
Bn,2(t1, t2)

ρn(t1)ρn(t2)

]

ti=〈N[0,si ]〉−1
= b2(s1, s2) ≡ b2(s1 − s2), (169)
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where 〈N [0, si]〉−1 is the inverse function of 〈N [0, si]〉. Similarly

lim
n→∞

[
Bn,3(t1, t2, t3)

ρn(t1)ρn(t2)ρn(t3)

]

ti=〈N[0,si ]〉−1
= b3(s1, s2, s3) ≡ b3(s1 − s2, s2 − s3), (170)

where b2(u) and b3(u, v) are well defined functions, with a quite complicated expression not
given here (see [21] for more detail). Given these results (169, 170), it is natural to perform
the change of variable si = 〈Nn[0, ti]〉 in (167), which yields
∫ x

0
dt1

∫ x

0
dt2

∫ x

0
dt3
(
Bn,3(t1, t2, t3) − 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)

)
(171)

=
∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds1

∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds2

∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds3

×
(

b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2

)
. (172)

Performing the change of variables si → si − 〈Nn[0, a]〉, one has
∫ x

0
dt1

∫ x

0
dt2

∫ x

0
dt3
(
Bn,3(t1, t2, t3) − 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)

)
(173)

=
∫ 〈Nn[a,b]〉

0
ds1

∫ 〈Nn[a,b]〉

0
ds2

∫ 〈Nn[a,b]〉

0
ds3

× (b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2) . (174)

Given that 〈Nn[a, b]〉 ∝ √
n in the large n limit for a, b > n−1/2, one gets the multiple inte-

gral in (173) in the large n limit as

∫ 〈Nn[a,b]〉

0
ds1

∫ 〈Nn[a,b]〉

0
ds2

∫ 〈Nn[a,b]〉

0
ds3 (b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2)

∼ σ 〈Nn[a, b]〉, (175)

with σ = 3
∫ 0

−∞ du
∫ 0

−∞ dv (b3(u, v) − 3b2(v) + 2), provided this double integral over u,v is
well defined (which we can only assume here given the complicated expression of b3(u, v)).

Finally, combining (166, 167, 92) together with (175) one obtains that

〈N3
n [a, b]〉c ∝ β3〈Nn[a, b]〉, (176)

with a3 = 1 + 3a2 + σ . Notice that the crucial point in the derivation of this relation is the
fact that 〈Nn[a, b]〉 ∝ √

n for any fixed a, b > n−1/2. One expects a similar mechanism to
hold for higher values of m, yielding (93) in the text.

〈Nm
n [a, b]〉c ∝ βm〈Nn[a, b]〉. (177)
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